
Assignment 2. Solutions.

Problems. January 27.

For each of the following functions find i) a power series representation,
ii) the radius convergence of the series.

1.
1

(1 − x)3

Solution.

We will use the formula

1

1 − x
=

∞
∑

n=0

xn, for |x| < 1.

Now differentiate this formula two times.

1

(1 − x)2
=

∞
∑

n=1

nxn−1,

2

(1 − x)3
=

∞
∑

n=2

n(n − 1)xn−2.

The radius of convergence does not change after differentiation. There-
fore, the radius of convergence of the latter two series is also 1.

Dividing the latter equation by 2, we get

1

(1 − x)3
=

∞
∑

n=2

n(n − 1)

2
xn−2.

Or, if we change the index of summation,

1

(1 − x)3
=

∞
∑

n=0

(n + 2)(n + 1)

2
xn.

2.
2x

(1 + 3x3)3

Solution. We will use the formula obtained above.

1

(1 − x)3
=

∞
∑

n=0

(n + 2)(n + 1)

2
xn.



Replacing x by −3x3 we get

1

(1 + 3x3)3
=

∞
∑

n=0

(n + 2)(n + 1)

2
(−3x3)n =

∞
∑

n=0

(−1)n3n(n + 2)(n + 1)

2
x3n.

The latter series converges when | − 3x3| < 1. So, its radius of conver-
gence is 1/ 3

√
3. Multiplying the series by 2x, we get

2x

(1 + 3x3)3
=

∞
∑

n=0

(−1)n3n(n + 2)(n + 1) x3n+1,

with radius of convergence 1/ 3
√

3.

3.
ln(1 + x2)

We again use the formula

1

1 − x
=

∞
∑

n=0

xn.

The latter has radius of convergence equal to 1.

After integration we get

− ln(1 − x) = C +
∞
∑

n=0

xn+1

n + 1
.

The radius of convergence of this series is again 1.

In order to find the value of C, we set x = 0 in the latter equation.

− ln(1) = C +
∞
∑

n=0

0n+1

n + 1
.

So, C = 0. Hence,

ln(1 − x) = −
∞
∑

n=0

xn+1

n + 1
.

Now replace x by −x2 and get

ln(1 + x2) = −
∞
∑

n=0

(−x2)n+1

n + 1
=

∞
∑

n=0

(−1)nx2n+2

n + 1
.

The radius of convergence of this series is also one, since | − x2| < 1
implies |x| < 1.



4.
x arctan 2x3

Solution.

We start with the formula

1

1 − x
=

∞
∑

n=0

xn.

Now replace x by −x2 to get

1

1 + x2
=

∞
∑

n=0

(−x2)n =

∞
∑

n=0

(−1)nx2n.

The radius of convergence of this series is 1, since since | − x2| < 1
implies |x| < 1.

Now integrate the formula we obtained above.

arctanx = C +
∞
∑

n=0

(−1)nx2n+1

2n + 1
.

The radius of convergence after integration remains the same, i.e. 1.

In order to find the value of C, we put x = 0 into the latter equality.

arctan 0 = C +

∞
∑

n=0

(−1)n02n+1

2n + 1
.

Therefore, C = 0, and we have

arctan x =

∞
∑

n=0

(−1)nx2n+1

2n + 1
.

Now replace x by 2x3. We get

arctan(2x3) =
∞
∑

n=0

(−1)n(2x3)2n+1

2n + 1
=

∞
∑

n=0

(−1)n22n+1x6n+3

2n + 1
.

The radius of convergence can be determined as follows. |2x3| < 1. So,
|x| < 1/ 3

√
2. Thus, the radius of convergence is 1/ 3

√
2.

Multiplying both sides in the above equality by x, we get

x arctan(2x3) =

∞
∑

n=0

(−1)n22n+1x6n+4

2n + 1
.

After this multiplication the radius of convergence remains the same,
1/ 3

√
2.



Problems. January 29.

1. Find the Taylor series for f(x) = 3x at x = 1.

Solution.

The Taylor series for a function f centered at x = a is given by

∞
∑

n=0

f (n)(a)

n!
(x − a)n.

Therefore, we need to compute the derivatives of all orders of the given
function at x = 1.

f(x) = 3x. Therefore,
f ′(x) = ln 3 · 3x,

f ′′(x) = (ln 3)23x,

f ′′′(x) = (ln 3)33x,

and so on. Thus, the nth derivative (for all n ≥ 0) equals

f (n)(x) = (ln 3)n3x.

Substituting x = 1, we get

f (n)(1) = (ln 3)n3.

Thus, the Taylor series is

∞
∑

n=0

3(ln 3)n

n!
(x − 1)n.

2. Find the Taylor series for f(x) = ln(2 + x) at x = 1.

Solution.

The required Taylor series is given by

∞
∑

n=0

f (n)(1)

n!
(x − 1)n.

Therefore, we need to compute the derivatives of all orders of the given
function at x = 1.

f(x) = ln(2 + x),



f ′(x) =
1

2 + x
,

f ′′(x) =
(−1)

(2 + x)2
,

f ′′′(x) =
(−1)(−2)

(2 + x)3
,

f (4)(x) =
(−1)(−2)(−3)

(2 + x)4
,

· · ·

f (n)(x) =
(−1)(−2)(−3) · · · (−(n − 1))

(2 + x)n
=

(−1)n−1(n − 1)!

(2 + x)n
,

for all n ≥ 1.

Thus,
f(1) = ln 3

and
f (n)(1) = (−1)n−1(n − 1)!3−n, for n ≥ 1.

The Taylor series for f(x) = ln(2 + x) at x = 1 equals

ln 3 +
∞
∑

n=1

(−1)n−1(n − 1)!3−n

n!
(x − 1)n

= ln 3 +

∞
∑

n=1

(−1)n−1

n · 3n
(x − 1)n.

3. Find the Taylor polynomial of order 3 for f(x) = tanx at x = 0.

Solution.

The Taylor polynomial of order 3 for f at x = a is given by

P3(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3.

Thus we need to compute the derivatives up to order 3 of the function
f(x) = tanx at x = 0.

We have
f ′(x) = sec2 x,

f ′′(x) = 2 sec x sec x tanx = 2 sec2 x tan x,



f ′′′(x) = 4 sec x sec x tan x tan x+2 sec2 x sec2 x = 4 sec2 x tan2 x+2 sec4 x.

Now find their values at x = 0.

f(0) = 0,

f ′(0) = 1,

f ′′(0) = 0,

f ′′′(0) = 2.

Therefore, the required Taylor polynomial equals

P3(x) = x +
2

3!
x3 = x +

x3

3
.

4. Find the Taylor polynomial of order 4 for f(x) = ex cos x at x = 0.

Solution.

The Taylor polynomial of order 4 for f at x = a is given by

P4(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2

+
f ′′′(a)

3!
(x − a)3 +

f (4)(a)

4!
(x − a)4.

Thus we need to compute the derivatives up to order 3 of the function
f(x) = ex cos x at x = 0.

f ′(x) = ex cos x − ex sin x,

f ′′(x) = ex cos x − ex sin x − ex sin x − ex cos x = −2ex sin x,

f ′′′(x) = −2ex sin x − 2ex cos x,

f (4)(x) = −2ex sin x − 2ex cos x − 2ex cos x + 2ex sin x = −4ex cos x.

Now find their values at x = 0.

f(0) = 1,

f ′(0) = 1,

f ′′(0) = 0,

f ′′′(0) = −2,



f (4) = −4.

Therefore,

P4(x) = 1 + x − 2

3!
x3 − 4

4!
x4

= 1 + x − x2

3
− x4

6
.

Problems. February 1.

1. Let f(x) = ex/2.

a) Find P4(x), the Taylor polynomial of order 4 for f(x) at x = 0.

b) Use the remainder estimation theorem to estimate the error when
f(x) is replaced by P4(x) on the interval [−1, 1].

Solution.

a) We know that

ex =
∞
∑

n=0

xn

n!
,

for all x.

Therefore,

ex/2 =
∞
∑

n=0

(x/2)n

n!
=

∞
∑

n=0

xn

2nn!
.

= 1 +
x

2
+

x2

222!
+

x3

233!
+

x4

244!
+ · · ·

Thus, taking the terms of order up to 4, we get the Taylor polynomial
of order 4.

P4(x) = 1 +
x

2
+

x2

8
+

x3

48
+

x4

384
.

b) The Taylor estimation theorem says that

|f(x) − P4(x)| ≤ M

5!
|x|5,

where M is such a number that |f (5)(x)| ≤ M on [−1, 1].

Since f (5)(x) = ex/2

25 , we have, for x ∈ [−1, 1],

|f (5)(x)| ≤ e1/2

25
=

√
e

32
= M.



Therefore,

|f(x) − P4(x)| ≤
√

e

5! · 32
|x|5 ≤

√
e

5! · 32
,

since |x| ≤ 1.

Thus the error is at most

√
e

5! · 32
.

2. Find the derivative of order 15 of the function f(x) = arctan(x3) at
x = 0. (Hint: use the Maclaurin series).

Solution.

As we saw above (January 27, problem # 4),

arctan x =

∞
∑

n=0

(−1)nx2n+1

2n + 1
.

Therefore, replacing x by x3, we get

f(x) = arctan(x3) =
∞
∑

n=0

(−1)nx6n+3

2n + 1
= x3 − x9

3
+

x15

5
− x21

7
+ · · · .

Differentiating 15 times and putting x = 0, we get

f (15)(0) =
15 · 14 · 13 · · ·2 · 1

5
=

15!

5
.

3. Find the binomial series for the function f(x) = (1− 2x)1/3. Write out
the first four terms of the series.

Solution.

By the binomial theorem,

(1 + x)1/3 =

∞
∑

n=0

(

1/3

n

)

xn.

Replacing x by −2x, we get

(1 − 2x)1/3 =

∞
∑

n=0

(

1/3

n

)

(−1)n2nxn.

Now compute the first four binomial coefficients.

(

1/3

0

)

= 1,

(

1/3

1

)

=
1

3
,

(

1/3

2

)

=
1
3

(

1
3
− 1
)

2
= −1

9
,



(

1/3

3

)

=
1
3

(

1
3
− 1
) (

1
3
− 2
)

3!
=

5

81
.

Hence,

(1 − 2x)1/3 =

∞
∑

n=0

(

1/3

n

)

(−1)n2nxn = 1 − 2

3
x − 4

9
x2 − 40

81
x3 − · · ·

Problems. February 3.

1. Approximate the value of the integral with an error of magnitude less
than 0.001.

∫ 1

0

1 − cos x

x2
dx.

Solution. We know that

cos x =
∞
∑

n=0

(−1)nx2n

(2n)!
= 1 +

∞
∑

n=1

(−1)nx2n

(2n)!
.

Then,

1 − cos x = −
∞
∑

n=1

(−1)nx2n

(2n)!
=

∞
∑

n=1

(−1)n−1x2n

(2n)!
,

1 − cos x

x2
=

∞
∑

n=1

(−1)n−1x2n−2

(2n)!
.

After integration we get

∫ 1

0

1 − cos x

x2
dx =

∞
∑

n=1

(−1)n−1x2n−1

(2n)!(2n − 1)

∣

∣

∣

1

0
=

∞
∑

n=1

(−1)n−1

(2n)!(2n − 1)

=
1

2
− 1

4! · 3 +
1

6! · 5 − · · · = 1

2
− 1

72
+

1

3600
− · · ·

This is a geometric series. We need to find the first term that is less
than 0.001. This is clearly 1/3600. Therefore, in order to approximate
the series with the given accuracy, we need to take the sum of the terms
that precede the latter one.

1

2
− 1

72
=

35

72
.



2. Use series to evaluate the limit

lim
x→0

e2x − (1 + 2x + 2x2 + 2x3)

sin x3
.

Solution.

Since

ex =

∞
∑

n=0

xn

n!
,

it follows that

e2x =

∞
∑

n=0

2nxn

n!
= 1 + 2x + 2x2 +

4

3
x3 +

2

3
x4 + · · ·

On the other hand,

sin x =
∞
∑

n=0

(−1)nx2n+1

(2n + 1)!
= x − x3

6
+ · · · ,

and so

sin x3 =
∞
∑

n=0

(−1)nx6n+3

(2n + 1)!
= x3 − x9

6
+ · · · ,

Therefore,

lim
x→0

e2x − (1 + 2x + 2x2 + 2x3)

sin x3

= lim
x→0

(1 + 2x + 2x2 + 4
3
x3 + 2

3
x4 + · · · ) − (1 + 2x + 2x2 + 2x3)

x3 − x9

6
+ · · ·

= lim
x→0

−2
3
x3 + 2

3
x4 + · · ·

x3 − x9

6
+ · · ·

= lim
x→0

−2
3

+ 2
3
x + · · ·

1 − x6

6
+ · · ·

= −2

3
.

3. Plot the following points given in polar coordinates. Then find their
Cartesian coordinates. a) (

√
2,−π/4), b) (−1, π/3), c) (2, π), d) (4, 7π/6).



a) (
√

2,−π/4)
x = r cos θ =

√
2 cos(−π/4) = 1,

y = r sin θ =
√

2 sin(−π/4) = −1.

Cartesian coordinates: (1,−1).

b) (−1, π/3)
x = r cos θ = −1 cos(π/3) = −1/2,

y = r sin θ = −1 sin(π/3) = −
√

3/2.

Cartesian coordinates: (−1/2,−
√

3/2).

c) (2, π)

x = r cos θ = 2 cosπ = −2,

y = r sin θ = −1 sin π = 0.

Cartesian coordinates: (−2, 0).

d) (4, 7π/6)
x = r cos θ = 4 cos(7π/6) = −2

√
3,

y = r sin θ = 4 sin(7π/6) = −2.

Cartesian coordinates: (−2
√

3,−2).

4. The following points are given in Cartesian coordinates. Find their
polar coordinates. a) (0,−1), b) (−3, 3), c) (2,−2

√
3), d) (

√
3,
√

3).

a) (0,−1)

r =
√

x2 + y2 = 1



cos θ =
x

r
= 0

sin θ =
y

r
= −1

So, θ = −π/2.

Polar coordinates: (1,−π/2).

b) (−3, 3)

r =
√

x2 + y2 = 3
√

2

cos θ =
x

r
= −1/

√
2

sin θ =
y

r
= 1/

√
2

So, θ = 3π/4.

Polar coordinates: (3
√

2, 3π/4).

c) (2,−2
√

3)

r =
√

x2 + y2 =
√

4 + 12 = 4

cos θ =
x

r
= 1/2

sin θ =
y

r
= −

√
3/2

So, θ = −π/3.

Polar coordinates: (4,−π/3).

d) (
√

3,
√

3)

r =
√

x2 + y2 =
√

3 + 3 =
√

6

cos θ =
x

r
= 1/

√
2

sin θ =
y

r
= 1/

√
2

So, θ = π/4.

Polar coordinates: (
√

6, π/4).

Problems. February 5.



1. Find a polar equation for the circle (x − 3)2 + (y + 4)2 = 25. Simplify
your answer.

Solution.

Using
x = r cos θ, y = r sin θ

we get
(r cos θ − 3)2 + (r sin θ + 4)2 = 25,

r2 cos2 θ − 6r cos θ + 9 + r2 sin2 θ + 8r sin θ + 16 − 25 = 0,

r2 cos2 θ + r2 sin2 θ − 6r cos θ + 8r sin θ = 0,

r2 − 6r cos θ + 8r sin θ = 0,

r − 6 cos θ + 8 sin θ = 0,

r = 6 cos θ − 8 sin θ.

2. Convert the equation r = tan θ sec θ from polar coordinates to Carte-
sian coordinates. Identify the curve.

Solution.

r =
sin θ

cos2 θ

r cos2 θ = sin θ

r2 cos2 θ = r sin θ

x2 = y.

This is a parabola.

3. Sketch the curve r = sin 3θ.

Solution. The points where the graph passes through the origin:

sin 3θ = 0.

So, θ = 0, π/3, 2π/3, π, 4π/3, 5π/3.



Three-leaved rose.

4. Sketch the curve r = cos 4θ.

Solution. The points where the graph passes through the origin:

cos 4θ = 0.

So, θ = π/8, 3π/8, 5π/8, 7π/8, 9π/8, 11π/8, 13π/8, 15π/8.

Eight-leaved rose.

Problems. February 8.



1. Find the slope of the four-leaved rose r = cos 2θ at the points where
θ = 0, π/6, π/4.

Solution.

Using the relation between polar and Cartesian coordinates

x = r cos θ, y = r sin θ,

we get
x = cos 2θ cos θ,

y = cos 2θ sin θ.

Now differentiate with respect to θ.

dx

dθ
= −2 sin 2θ cos θ − cos 2θ sin θ,

dy

dθ
= −2 sin 2θ sin θ + cos 2θ cos θ.

The slope is given by

dy

dx
=

dy
dθ
dx
dθ

=
−2 sin 2θ sin θ + cos 2θ cos θ

−2 sin 2θ cos θ − cos 2θ sin θ

Now substitute the given values θ = 0, π/6, π/4.

dy

dx

∣

∣

∣

θ=0
= ∞,

that is the tangent line is vertical.

dy

dx

∣

∣

∣

θ=π/6
=

−2 sin(π/3) sin(π/6) + cos(π/3) cos(π/6)

−2 sin(π/3) cos(π/6) − cos(π/3) sin(π/6)
=

−2 ·
√

3
4

+
√

3
4

−2 · 3
4
− 1

4

=
−

√
3

4

−7
4

=

√
3

7
.

dy

dx

∣

∣

∣

θ=π/4
=

−2 sin(π/2) sin(π/4) + cos(π/2) cos(π/4)

−2 sin(π/2) cos(π/4) − cos(π/2) sin(π/4)
=

−
√

2

−
√

2
= 1.



2. Find the points of intersection of the curves r2 = cos θ and r2 = sin θ.

Solution.

If we set the equations r2 = cos θ and r2 = sin θ equal to each other,
we get

cos θ = sin θ,

tan θ = 1,

θ =
π

4
.

Now solve
r2 = cos

π

4
= 1/

√
2.

r = ±1/
4
√

2.

So, we get (1/ 4
√

2, π
4
), (−1/ 4

√
2, π

4
) as points of intersection.

Now notice that both curves are symmetric with respect to the x-
axis. Indeed, if (r, θ) belongs to the curve r2 = cos θ, then so does
(r,−θ). Similarly, if (r, θ) belongs to the curve r2 = sin θ, then so does
(−r, π − θ).

Since both curves are symmetric with respect to the x-axis, we get two
more points of intersection: (1/ 4

√
2,−π

4
), (−1/ 4

√
2,−π

4
).

Finally, notice that origin belongs to both curves. Thus, the fifth point
of intersection is (0, 0).

3. Find the area inside one leaf of the three-leaved rose r = sin 3θ.

Solution.

In order to find the angles that define one leaf of the curve, we set

sin 3θ = 0

and get θ = 0 and θ = π/3.

Therefore,

A =
1

2

∫ π/3

0

sin2 3θdθ =
1

4

∫ π/3

0

(1 − cos 6θ)dθ

=
1

4
(θ − 1

6
sin 6θ)

∣

∣

∣

π/3

0
=

π

12
.



Problems. February 10.

1. Sec. 10.7 # 8. Find the area of the region shared by the circles r = 1
and r = 2 sin θ.

Solution.

First let us find the points of intersection of these two circles. Setting
the two functions equal to each other, we get the equation

2 sin θ = 1,

sin θ =
1

2
,

θ =
π

6
,
5π

6
.

Since both circles are symmetric with respect to the y-axis, we will only
consider that part of the region that lies in the first quadrant. This
region consists of two parts:

i) if 0 ≤ θ ≤ π/6, the region is bounded by the curve r = 2 sin θ.

ii) if π/6 ≤ θ ≤ π/2, the region is bounded by the curve r = 1.

So, one half of the area equals

1

2
A =

1

2

(

∫ π/6

0

(2 sin θ)2dθ +

∫ π/2

π/6

1dθ

)

=
1

2

(

∫ π/6

0

2(1 − cos 2θ)dθ + θ
∣

∣

∣

π/2

π/6

)

=
1

2

(

2(θ − 1

2
sin 2θ)

∣

∣

∣

π/6

0
+ θ
∣

∣

∣

π/2

π/6

)

=
1

2

(π

3
− sin

π

3
+

π

2
− π

6

)

=
π

3
−
√

3

4
.

So,

A =
2π

3
−

√
3

2
.

2. Sec. 10.7 # 12 Find the area of the region inside the circle r = 3a cos θ
and outside the cardioid r = a(1 + cos θ), a > 0.

Solution.

Let us find the points of intersection of the two curves.

3a cos θ = a(1 + cos θ),

3 cos θ = 1 + cos θ,

2 cos θ = 1,



θ = ±π

3
.

The region is bounded outside by the curve r = 3a cos θ and inside by
the curve r = a(1 + cos θ). So, using the symmetry with respect to the
x-axis, we get

A = 2 · 1

2

∫ π/3

0

[

9a2 cos2 θ − a2(1 + cos θ)2
]

dθ,

= a2

∫ π/3

0

[

9 cos2 θ − (1 + 2 cos θ + cos2 θ)
]

dθ

= a2

∫ π/3

0

[

8 cos2 θ − 1 − 2 cos θ
]

dθ

using the double-angle formula,

= a2

∫ π/3

0

[4 + 4 cos 2θ − 1 − 2 cos θ] dθ

= a2 [3θ + 2 sin 2θ − 2 sin θ]
∣

∣

∣

π/3

0
= a2

[

π + 2 sin
2π

3
− 2 sin

π

3

]

= πa2.

3. Sec. 10.7 # 22. Find the length of the curve r = a sin2(θ/2), 0 ≤ θ ≤ π,
a > 0.

Solution.

L =

∫ π

0

√

a2 sin4(θ/2) + (2a sin(θ/2)
1

2
cos(θ/2))2dθ

= a

∫ π

0

√

sin4(θ/2) + sin2(θ/2) cos2(θ/2)dθ

= a

∫ π

0

sin(θ/2)
√

sin2(θ/2) + cos2(θ/2)dθ

= a

∫ π

0

sin(θ/2)dθ = −2a cos(θ/2)
∣

∣

∣

π

0
= 2a.

4. Sec. 10.7 # 30. Find the area of the surface generated by revolving
the curve r =

√
2eθ/2, 0 ≤ θ ≤ π/2 about the x-axis.

Solution.



S =

∫ π/2

0

2π
√

2eθ/2 sin θ

√

(
√

2eθ/2)2 + (

√
2

2
eθ/2)2dθ

= 2
√

2π

∫ π/2

0

eθ/2 sin θ

√

2eθ +
1

2
eθdθ

= 2
√

2π

∫ π/2

0

eθ/2 sin θ · eθ/2

√

5

2
dθ

= 2
√

5π

∫ π/2

0

eθ sin θ dθ

Now let us separately compute the following integral
∫

eθ sin θ dθ =

[

u = sin θ, du = cos θ dθ
dv = eθ dθ, v = eθ

]

= eθ sin θ −
∫

eθ cos θ dθ =

[

u = cos θ, du = − sin θ dθ
dv = eθ dθ, v = eθ

]

= eθ sin θ − eθ cos θ −
∫

eθ sin θ dθ.

This is the same integral. Therefore

2

∫

eθ sin θ dθ = eθ sin θ − eθ cos θ + C,

∫

eθ sin θ dθ =
1

2

[

eθ sin θ − eθ cos θ
]

+ C.

So,

S = 2
√

5π
1

2

[

eθ sin θ − eθ cos θ
]

∣

∣

∣

π/2

0
=

√
5π
[

eπ/2 + 1
]

.

Problems. February 12.

1. Sec. 12.1: # 12. Give a geometric description of the set of points in
space whose coordinates satisfy the given pair of equations. x2 + (y −
1)2 + z2 = 4, y = 0.

Solution.

Substituting y = 0 into x2 + (y − 1)2 + z2 = 4, we get

x2 + 1 + z2 = 4



x2 + z2 = 3.

So, this is a circle in the plane y = 0, whose center is at the origin and
radius is

√
3.

2. Sec. 12.1: # 16 Describe the sets of points in space whose coordi-
nates satisfy the given inequalities or combinations of equations and
inequalities.

a) x2 + y2 ≤ 1, z = 0

Solution. This is the disk of radius 1 centered at the origin that lies
in the coordinate plane z = 0.

b) x2 + y2 ≤ 1, z = 3

Solution. This is the disk of radius 1 centered at the point (0, 0, 3)
that lies in the coordinate plane z = 0.

c) x2 + y2 ≤ 1, no restriction on z.

Solution. For each fixed z, we get a disk of radius 1 with center on
the z-axis. Taking all such disks, we get the cylinder whose axis is the
z-axis and whose sections by the planes parallel to xy-plane are disks
of radius 1.

3. Sec. 12.1: # 30. Write inequalities that describe the solid cube in the
first octant bounded by the coordinate plane and the planes x = 2,
y = 2, z = 2.

Solution. 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2.

4. Sec. 12.1: # 32 Write inequalities that describe the upper hemisphere
of the sphere of radius 1 centered at the origin.

Solution. x2 + y2 + z2 = 1, z ≥ 0.

5. Sec. 12.1: # 52. Find the center and radius of the sphere 3x2 + 3y2 +
3z2 + 2y − 2z = 9.

Solution.

x2 + y2 + z2 +
2

3
y − 2

3
z = 3,

x2 + y2 +
2

3
y +

1

9
+ z2 − 2

3
z +

1

9
− 1

9
− 1

9
= 3,

x2 +

(

y +
1

3

)2

+

(

z − 1

3

)2

=
29

9
.

The center of the sphere is (0,−1/3, 1/3), the radius is
√

29/3.



6. Sec. 12.1: # 56. Show that the point P (3, 1, 2) is equidistant from the
points A(2,−1, 3) and B(4, 3, 1).

Solution.

|AP | =
√

(3 − 2)2 + (1 + 1)2 + (2 − 3)2 =
√

6.

|BP | =
√

(3 − 4)2 + (1 − 3)2 + (2 − 1)2 =
√

6.

So, |AP | = |BP |.


