Assignment 2. Solutions.
Problems. January 27.

For each of the following functions find i) a power series representation,
ii) the radius convergence of the series.

1.
1
(1—x)?
Solution.
We will use the formula
L oS for o] < 1
= x", for |x .
l—z ’
Now differentiate this formula two times.
1 = n—1
— 2 an ’
(1 [L’) n=1
2 in(n — 12" 2
—7r)3 ’
(1—2x) s
The radius of convergence does not change after differentiation. There-
fore, the radius of convergence of the latter two series is also 1.
Dividing the latter equation by 2, we get
1 “nn—1) .,
— 3 Z o
(1—2) —~ 2
Or, if we change the index of summation,
I S m+2)n+1) ,
(1—x)3 o Z 2 v
n=0
2.
2z
(1+ 323)3

Solution. We will use the formula obtained above.

1 . (n+2)(n+1
:Z( )( )

1—2)° 2 v

n=0



Replacing = by —32% we get

1 :i(n+2)(n—|—1 i": ”3”n+2)(n+1)x3n.

3)3
(14 323) — 2 =

The latter series converges when | — 323 < 1. So, its radius of conver-
gence is 1/+/3. Multiplying the series by 2z, we get

e}

= (—1)"3"(n+2)(n+1) 2™,

n=0

2x
(1+ 323)3

with radius of convergence 1/ /3.

In(1+ z?)

We again use the formula

oo
=2 "
n=0

The latter has radius of convergence equal to 1.

After integration we get

—ln(l—z):C+Z -

:0n+1

The radius of convergence of this series is again 1.

In order to find the value of C', we set x = 0 in the latter equation.

On+1
—In(1)=C+
(1) z::o n+1
So, C' = 0. Hence,
0 ol
In(1 — z) Z
n:O
Now replace = by —z? and get
x 2\n+1 © —1)" 2n+2
In(1+2?) = — =) = =)™
—~ n+l ~ n+l
The radius of convergence of this series is also one, since | — 22| < 1

implies |z| < 1.



x arctan 22>

Solution.
We start with the formula

1 =
1_x:;x.

Now replace x by —2? to get

1 n n n
T = =2 e
n=0 n=0
The radius of convergence of this series is 1, since since | — z?| < 1

implies |z| < 1.
Now integrate the formula we obtained above.
_1)nx2n+l

=
arctanx = C + g -
—~ 2n+1

The radius of convergence after integration remains the same, i.e. 1.

In order to find the value of C', we put x = 0 into the latter equality.

. 0 C4 e (_1)n02n+1
arctanyv = E —_—.
— 2n+1

Therefore, C'= 0, and we have

B o (_1)nx2n+1
arctanx = ; TH
Now replace x by 223. We get

o (_1)n(2x3)2n+1 0 (_1)n22n+1x6n+3
arctan(22?) = Z 1 = Z 1 :

The radius of convergence can be determined as follows. |22%| < 1. So,
|z| < 1/+/2. Thus, the radius of convergence is 1/v/2.

Multiplying both sides in the above equality by x, we get

0 —1)"92n+1,.6n+4
r arctan(22%) = Z (=1) ’

n=0

2n+1

After this multiplication the radius of convergence remains the same,

1//2.



Problems. January 29.

1. Find the Taylor series for f(z) = 3" at x = 1.
Solution.

The Taylor series for a function f centered at x = a is given by

2 tn)(g
Zf '( )(:E—a)".

n

Therefore, we need to compute the derivatives of all orders of the given
function at x = 1.

f(z) = 3%. Therefore,
f(z) =In3- 37,

f"(z) = (In3)3,
£(x) = (n3)'s°,
and so on. Thus, the nth derivative (for all n > 0) equals
f™(z) = (In3)"3°.
Substituting z = 1, we get

F™(1) = (In3)"3.

Thus, the Taylor series is

3(In3)"
n!

WK

(x —1)".

Il
o

n

2. Find the Taylor series for f(x) =In(2 + ) at x = 1.
Solution.

The required Taylor series is given by

> f(n)
Zf !(1)(55—1)".

n

Therefore, we need to compute the derivatives of all orders of the given
function at x = 1.

f(x) =In(2 + ),



f) = 5o
P =
) =0,
P = A

(2 + ) R
for all n > 1.
Thus,
f(1)=1n3
and

fM(1) = (=1)""Y(n—1)!37™", for n > 1.

The Taylor series for f(z) =1In(2 + x) at * = 1 equals

n!

In3 + i (=)™ (0 — )37 (x—1)"

= ln3+iﬂ(x— "
—~ n- 3n '
. Find the Taylor polynomial of order 3 for f(z) =tanx at z = 0.
Solution.
The Taylor polynomial of order 3 for f at x = a is given by

f"a) (x—a)*+ f"la) (x —a)’.

Py(z) = fa) + f(a)(x —a) + —; 3!

Thus we need to compute the derivatives up to order 3 of the function
f(x) =tanx at x = 0.

We have
f'(x) = sec?z,

f"(x) = 2secwrsecx tanx = 2sec’ x tan x,



f"(x) = 4secwsecxtan x tan v+2sec’ v sec’ v = 4sec x tan® r+2sec’ .

Now find their values at x = 0.

f(0) =0,
f1(0) =1,
J"(0) =0
£(0) = 2.

Therefore, the required Taylor polynomial equals
2 3
Ps(x) ::B+§:)s :x+§.

4. Find the Taylor polynomial of order 4 for f(z) = e* cosx at z = 0.
Solution.

The Taylor polynomial of order 4 for f at x = a is given by

Pe) = f(a) + Fa)e —a) + T ap

"(q 5 (4)CL A
fg(! )(x—a) —i—f4!( )(x—a).

Thus we need to compute the derivatives up to order 3 of the function
f(x) =e"cosx at z = 0.

_|_

f'(x) =e"cosz — e sinx,

f"(z) =€ cosz — e sinz — e*sinx — €” cosx = —2¢” sin
f"(x) = —2¢€" sinx — 2€” cos ,
fW(x) = —2e"sinz — 2e® cos & — 2e® cos T + 2% sinx = —4e® cos .

Now find their values at z = 0.

f(0) =1,
f'(0) =1,
f//(()) — 0’



Therefore,

Problems. February 1.

1. Let f(z) = e*/2.
a) Find Py(z), the Taylor polynomial of order 4 for f(z) at x = 0.

b) Use the remainder estimation theorem to estimate the error when
f(z) is replaced by Py(x) on the interval [—1,1].

Solution.
a) We know that

f: ZE_
n=0 n!
for all z.

Therefore,

. — (2/2)" & an
6/2:;:0937“ :nZ:Oan!'

x  2? x3 xt

14t
Ty T g Ty Taa T

Thus, taking the terms of order up to 4, we get the Taylor polynomial

of order 4.

2 o ot

i
Pu(z) = 1 RN
@) =1+5+ o+ 5+

b) The Taylor estimation theorem says that

7() — Pu(o)] < gl

where M is such a number that |f©®)(z)] < M on [~1,1].

Since f©®)(z) = <2, we have, for z € [-1, 1],

25 )
vz /e
O (g)| < S = YE_




Therefore,

Ve
5! 32

2> <

|f(z) = Py(z)] <
since |z| < 1.

NG
51.32°

. Find the derivative of order 15 of the function f(z) = arctan(z?) at
x = 0. (Hint: use the Maclaurin series).

Thus the error is at most

Solution.

As we saw above (January 27, problem # 4),

o —1)ngp2ntl
arctanx = E %
n

Therefore, replacing x by 23, we get

x 0 T x
= arct 3) = ANt %, S S
f(x) = arctan(z”) 2 o x 5 + =z 7 +

e (_1)n 6n+3 9 15 21

Differentiating 15 times and putting z = 0, we get

15-14-13---2-1 15!

FO9(0) = S

. Find the binomial series for the function f(z) = (1 — 2x)'/3. Write out
the first four terms of the series.

Solution.

By the binomial theorem,

(1+2)Y3 = i(l/g) ",

n=0

Replacing x by —2x, we get
= /1/3
1—2 1/3: —1)"on ™
(1-22) nzg:(ﬂ)( )2

Now compute the first four binomial coefficients.

() -1.() - () - 22



Hence,

Problems. February 3.

. Approximate the value of the integral with an error of magnitude less
than 0.001.
/ '1—cosz
0 x
Solution. We know that

I Y I Y )

—~ (2n)! - (2n)!
Then,
e n 2n n 1 2n
1 —cosx = Z —_—
=1 n=1
l—cosx i (—1)n a2
2 ot (2n) '
After integration we get
/ 1— COSSL’ i n 14.2n—1 ) i n 1
0 — '(2n —1) — 2n - 1)
1 1 1 1 1 n 1
2 4. 3 6!-5 T2 72 3600

This is a geometric series. We need to find the first term that is less
than 0.001. This is clearly 1/3600. Therefore, in order to approximate
the series with the given accuracy, we need to take the sum of the terms
that precede the latter one.

1 35

2 72 T2



2. Use series to evaluate the limit

e* — (14 2x + 22? + 223)

li .
20 sin 23
Solution.
Since .
T _ "
© = ; n!’
it follows that
= 2" 4 2
2 2 3 4
e’ = =14+2x4+22"4+ "+ -2~ +---
; nl 3" T3
On the other hand,
' o0 (_1)nx2n+1 x3
SINnxr — _— = —_—— “ e
; I A
and so .
] 5 (_l)nx6n+3 3 1'9
sinx° = R N A By
nzzo CntD)l "6
Therefore,
lim e* — (14 2x + 222 + 223)
i
7—0 sin a3
g (14224222 + 32 4+ 22 4+ -+ ) — (14 22 + 227 4 227)
o :E{I(l] 1'3 — ‘r_g + e
6
2,3, 2.4 2, 2
—lim_?’x +327 +- _lim—§+§x+ :_2
z—0 3 %9 + z—0 ] — %6 + 3

3. Plot the following points given in polar coordinates. Then find their
Cartesian coordinates. a) (v/2, —7/4),b) (=1,7/3),¢) (2,7), d) (4,77/6).



a) (V2,—m/4)
z=rcosf =2cos(—m/4) = 1,

y =rsinf = 2sin(—n/4) = —1.
Cartesian coordinates: (1, —1).

b) (—1,7/3)
x =rcosf = —1cos(n/3) = —1/2,

y =rsinf = —1sin(7/3) = —V/3/2.
Cartesian coordinates: (—1/2, —v/3/2).
c) (2,m)

xr=rcos =2cosm = —2,
y=rsinf = —1sinmT = 0.
Cartesian coordinates: (—2,0).

d) (4,77/6)
z =rcosh = 4cos(Tr/6) = —2V/3,

y=rsinf = 4sin(77/6) = —2.
Cartesian coordinates: (—2v/3, —2).
. The following points are given in Cartesian coordinates. Find their
polar coordinates. a) (0, —1), b) (—3,3), ¢) (2, -2v3), d) (v/3,V3).
a) (0,—1)

Fe PP =1



cosf == =0
T
sing =2 = 1
r

So, 0 = —7/2.
Polar coordinates: (1, —m/2).
b) (=3,3)

r=22+y%=3V2

cosf =" = —1/V2

r
sind = 2 = 1/v/2
r
So, 6 = 37 /4.
Polar coordinates: (3v/2,37/4).
C) (27_2\/§>
r=y22+y2=v4+12=14
x
H = — =
cos . 1/2

sinf = % = —V3/2
So, 0 = —m/3.
Polar coordinates: (4, —7/3).
d) (v3,v3)

e VTR = VETE= VG
cosf = ; =1/V2
sinf =2 = 1/V2

r
So, 0 = /4.

Polar coordinates: (v/6,7/4).

Problems. February 5.



1. Find a polar equation for the circle (z — 3)% + (y + 4)? = 25. Simplify
your answer.

Solution.

Using
r=rcosf, y=rsinf

we get
(rcos® — 3)? + (rsinf + 4)* = 25,

r2cos? — 6rcosf + 9+ r?sin®f + 8rsinf + 16 — 25 = 0,
12 cos® 0 4+ r?sin® @ — 6r cos @ + 8rsinf = 0,
72 — 6rcosf + 8rsinf = 0,
r —6cosf + 8sinf = 0,
r =6cosf — 8sinf.

2. Convert the equation r = tanfsec6 from polar coordinates to Carte-
sian coordinates. Identify the curve.

Solution. )
_ sin 0
~ cos?6
rcos?f = sind

r?cos?f = rsinf

Tt =uy.

This is a parabola.

3. Sketch the curve r = sin 36.
Solution. The points where the graph passes through the origin:

sin 360 = 0.

So, 0 = 0,7/3,2m/3, 7,47 /3,57 /3.



Vi
QN
)/ \
TN
/ "\

Three-leaved rose.

4. Sketch the curve r = cos 46.
Solution. The points where the graph passes through the origin:

cos40 = 0.

So, 6 = /8,37 /8,57 /8, 7Tr/8,97/8,11x /8,137 /8, 157/8.

Eight-leaved rose.

Problems. February 8.



1. Find the slope of the four-leaved rose r = cos 26 at the points where
0=0,7/6,7/4.

Solution.

Using the relation between polar and Cartesian coordinates
xr=rcosf, y=rsinb,

we get
x = cos 26 cos 6,

y = cos 20sin 6.

Now differentiate with respect to 6.

dx ) .
5= —2sin 26 cos § — cos 20 sin 0,
dy , :

0 —2sin 20 sin 6 + cos 260 cos 6.

The slope is given by

dy % _ —2sin20sin 6 + cos 20 cos 0

dr % ~ —2sin 20 cosf — cos 20 sin 6

Now substitute the given values § = 0, 7/6, 7/4.

dy|  _
drlo=0

Y

that is the tangent line is vertical.

dy _ —2sin(w/3) sin(7/6) 4 cos(mw/3) cos(w/6)  —2-

dxlo=rse  —2sin(m/3) cos(m/6) — cos(m/3) sin(w/6) -

_g_\/g

_E 7

[\
+
~lels,

dy _ 2 sin(7/2) sin(7/4) + cos(7/2) cos(n/4)  —/2
dxlo=r/a  —2sin(w/2) cos(m/4) — cos(n/2) sin(m/4)  —/2




2

2. Find the points of intersection of the curves 72 = cosf and r? = sin 6.

Solution.

2

If we set the equations r? = cos@ and r? = sin equal to each other,

we get
cosf = sin 6,
tanf =1,
T
0=—.
4
Now solve

r? :cos% = 1/V2.

r=+1/v2.
So, we get (1/v/2,Z), (—1/v/2, %) as points of intersection.

Now notice that both curves are symmetric with respect to the x-
axis. Indeed, if (r,0) belongs to the curve r? = cosf, then so does
(r,—0). Similarly, if (r, ) belongs to the curve r? = sin 6, then so does
(—r,m—6).

Since both curves are symmetric with respect to the z-axis, we get two
more points of intersection: (1/v/2, —%), (—1/v/2, —2).

Finally, notice that origin belongs to both curves. Thus, the fifth point
of intersection is (0, 0).

3. Find the area inside one leaf of the three-leaved rose r = sin 36.
Solution.

In order to find the angles that define one leaf of the curve, we set
sin30 = 0

and get =0 and 0 = /3.

Therefore,
1 w/3 1 w/3
A= —/ sin? 30d = —/ (1 — cos66)do
2 Jo 4 Jo
1 1 . /3
—1(9—6811'169) 0 —E




Problems. February 10.

1. Sec. 10.7 # 8. Find the area of the region shared by the circles r = 1
and r = 2sinf.

Solution.

First let us find the points of intersection of these two circles. Setting
the two functions equal to each other, we get the equation

2sinf =1,
1
sinf) = —,
2

T o7
0=—,—.
6" 6

Since both circles are symmetric with respect to the y-axis, we will only
consider that part of the region that lies in the first quadrant. This
region consists of two parts:

i) if 0 < 0 < 7/6, the region is bounded by the curve r = 2sin6.
ii) if 7/6 < 0 < 7/2, the region is bounded by the curve r = 1.

So, one half of the area equals

1 1 /6 w/2 1 w/6
—A=— / (2sin 0)%d6 + / 1do | = = / 2(1 —cos26)df + 6
2 2\ Jo /6 2\Jo

/2 1 /7 R T V3
S O )
/6 2\3 3 2 6 3 4

w/2
w/6

1 1 s
—§<2(9—§sm29)‘0 +0

So,

3 2

2. Sec. 10.7 # 12 Find the area of the region inside the circle r = 3a cos 6
and outside the cardioid r = a(1 4 cos @), a > 0.

A:27T V3

Solution.

Let us find the points of intersection of the two curves.
3acosf = a(l+ cosh),

3cosf =1+ cosb,
2cosf =1,



™
0=+—.
3

The region is bounded outside by the curve r = 3a cosf and inside by
the curve r = a(1 + cos#). So, using the symmetry with respect to the

r-axis, we get

1 w/3
A=2. 3 / [9a” cos? 6 — a®(1 + cos )] db,
0

w/3
a2/ [9cos® @ — (14 2cosf + cos® )] df
0

w/3
:a2/ [8COS29—1—2COSQ}d¢9
0
using the double-angle formula,

w/3
:az/ [4+4cos20 —1—2cosb]dd
0

w/3 2
=a® 7r—|—2$in—7T —2sinz
0 3 3

= a*[30 + 2sin 20 — 2sin 0]
:7TCL2.

3. Sec. 10.7 # 22. Find the length of the curve r = asin?(6/2),0 < 0 < 7,
a > 0.

Solution.
L— /0 ' \/ a2 sin'(6/2) + (2a sm(e/z)% cos(0/2))2d0
= a/o7r \/sin4(9/2) + sin?(0/2) cos2(0/2)d0
—a /O ' sin(6/2)1/sin®(6/2) + cos?(9/2)d8

—q / " sin(6/2)d60 = —2acos(0/2)|" = 2.

0
4. Sec. 10.7 # 30. Find the area of the surface generated by revolving
the curve r = v/2¢/2, 0 < 6 < /2 about the z-axis.

Solution.



w/2 \/§
S :/ 27T\/§ee/2 sin @ (\/5@9/2)2 + (769/2)2&9
0

w/2 1
= 2\/§7r/ /2 sin 04/ 2% - 569d9
0
w/2 5
= 2\/57?/ 2 sin @ - /2 §d9
0

/2
= 2\/57T/ ¢’ sin 6 df
0
Now let us separately compute the following integral

0 . | u=sinf#, du=cost db
/e sin 0 df = {dv:egdﬁ, v f

0w 0 | u=cost, du=—sin6 df
=e’sind /ecosﬁd@—{ah]:eed(97 v — f

=e’sinf — €’ cosf — /ee sinf df.
This is the same integral. Therefore

2/6981119 df = e’ sinf — e’ cos b + C,

/eesinﬁ df = % [eesinﬁ—eecosﬂ + C.

So,
w/2

S = 2\/5%% [eesin9— 690089} . = /br [e”/z + 1} )

Problems. February 12.

. Sec. 12.1: # 12. Give a geometric description of the set of points in
space whose coordinates satisfy the given pair of equations. 2% + (y —
1) +22=4,y=0.

Solution.

Substituting y = 0 into 2% + (y — 1)? + 2% = 4, we get

2?+1+22=14



22+ 22 =3.

So, this is a circle in the plane y = 0, whose center is at the origin and
radius is /3.

. Sec. 12.1: # 16 Describe the sets of points in space whose coordi-
nates satisfy the given inequalities or combinations of equations and
inequalities.

a) 2 +y*<1,2=0

Solution. This is the disk of radius 1 centered at the origin that lies
in the coordinate plane z = 0.

b) 2 +y*<1,2=3

Solution. This is the disk of radius 1 centered at the point (0,0, 3)
that lies in the coordinate plane z = 0.

c) 2% + y* < 1, no restriction on z.

Solution. For each fixed z, we get a disk of radius 1 with center on
the z-axis. Taking all such disks, we get the cylinder whose axis is the
z-axis and whose sections by the planes parallel to xy-plane are disks
of radius 1.

. Sec. 12.1: # 30. Write inequalities that describe the solid cube in the
first octant bounded by the coordinate plane and the planes = = 2,
y=2 z=2.

Solution. 0 <2 <2, 0<y<2,0<2<2.

. Sec. 12.1: # 32 Write inequalities that describe the upper hemisphere
of the sphere of radius 1 centered at the origin.

Solution. 22 +y? +22=1, 2 > 0.

. Sec. 12.1: # 52. Find the center and radius of the sphere 322 4 3y +
322 +2y —22=09.

Solution. 5
2 2 2
—y — — 3
r+y +z +3y BZ ,
1 2 1 1
2 2 2
il _c, .- _ - _ - —3
¢ +y +3y+9+ 3z+9 99 ,

z? + +12+ z—12—§
T3 3) T 9

The center of the sphere is (0, —1/3,1/3), the radius is v/29/3.



6. Sec. 12.1: # 56. Show that the point P(3,1,2) is equidistant from the
points A(2,—1,3) and B(4,3,1).

Solution.

|AP| =/(3-22+ (1+1)2+ (2—-3)2= 6.

|IBP|=+/(3—42+(1-3)2+(2—1)2 = 6.
So, |[AP| = |BP|.



